Прогнозирование потоков экскурсионных групп музеев на основе модификации метода случайного леса

Оцените материал
(0 голосов)

Опубликовано №4 (99) июнь 2020 г.

АВТОРЫ:  АСЛАХАНОВ А.Р., ПАВЛОВА Е.В.

РУБРИКИ: Имитационное моделирование Информационные технологии в логистике и SCM Оптимизация и экономико-математическое моделирование Управление логистическим сервисом

 

 

Аннотация 

 В последние годы как в России, так и в мире наблюдается ежегодный рост количества посетителей музеев, самые популярные выставки посещаются миллионами людей. В 2020 году в условиях карантинных мер в связи с эпидемией COVID-19 вопрос управления потоками посетителей музеев встал особенно остро. Если ранее пропускная способность музеев была ограничена максимальной продолжительностью возможной эвакуации из здания музея, выставочными площадями и количеством сотрудников, работающих с посетителями, то в 2020 году в связи с соблюдением санитарно-эпидемиологических правил пропускная способность музеев была снижена ещё. Это обуславливает актуальность аналитических решений для музеев, так как для управления потоками посетителей и адаптации к высокому спросу необходимо иметь эффективную модель прогнозирования, учитывающую детерминированность спроса целым рядом факторов. Целью данной работы является разработка модели прогнозирования количества экскурсионных групп в детализации музей-день-час. В качестве метода прогнозирования предлагается модификация случайного леса с включением в модель более 450 независимых переменных. Модификация модели заключается в изменении механизма комбинирования прогнозов деревьев в составе леса таким образом, что вес дерева в модели обратно пропорционален ошибке измерений данного дерева. Апробация предложенной модели проводится на основании данных о более чем 20 000 экскурсионных групп Государственного Русского Музея за период 2018-2020 гг. Предложенная модель продемонстрировала высокую точность (36.6% WAPE и 0.5% BIAS).

Электронная версия

Ключевые слова: прогнозирование машинное обучение метод случайного леса прогноз комбинирование прогнозов Python музеи сервис

 

Прочитано 455 раз

Контакты

Работа с авторами 

Левина Тамара

моб. 8(962) 965-48-54

E-mail: levina-tamara@mail.ru

Распространение

Алямовская Наталия

моб. 8(916) 150-07-21

E-mail: nalyamovskaya@mail.ru

Адрес 

125319, Москва, ул. Черняховского, д.16

тел./факс (495) 771 32 58